

Lecture 13

Minimum Spanning Trees

(MSTs): Prim, Kruskal
CS 161 Design and Analysis of Algorithms Ioannis Panageas

Minimum Spanning Trees

Spanning subgraph

- Subgraph of a graph G containing all the vertices of \boldsymbol{G} Spanning tree
- Spanning subgraph that is itself a (free) tree
Minimum spanning tree (MST)
- Spanning tree of a weighted graph with minimum total edge weight
- Applications
- Communications networks
- Transportation networks

Cycle Property

Cycle Property:

- Let \boldsymbol{T} be a minimum spanning tree of a weighted graph \boldsymbol{G}
- Let e be an edge of \boldsymbol{G} that is not in T and C let be the cycle formed by e with T
- For every edge f of C, weight $(f) \leq$ weight (e)
Proof:
- By contradiction
- If weight $(f)>$ weight (e) we can get a spanning tree of smaller weight by replacing e with f

Partition Property

Partition Property:

- Consider a partition of the vertices of G into subsets U and V
- Let e be an edge of minimum weight across the partition
- There is a minimum spanning tree of G containing edge e
Proof:
- Let \boldsymbol{T} be an MST of \boldsymbol{G}

- If T does not contain e, consider the cycle C formed by e with \boldsymbol{T} and let f be an edge of C across the partition
- By the cycle property, weight $(f) \leq$ weight (e)
- Thus, weight $(f)=$ weight $($ e $)$
- We obtain another MST by replacing f with e

Prim-Jarnik' s Algorithm

- Similar to Dijkstra's algorithm
- We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from s
- We store with each vertex \boldsymbol{v} label $\boldsymbol{d}(\boldsymbol{v})$ representing the smallest weight of an edge connecting v to a vertex in the cloud
- At each step:
- We add to the cloud the vertex \boldsymbol{u} outside the cloud with the smallest distance label
- We update the labels of the vertices adjacent to u

Prim-Jarnik Pseudo-code

Algorithm PrimJarníkMST(G):

Input: A weighted connected graph G with n vertices and m edges
Output: A minimum spanning tree T for G
Pick any vertex v of G
$D[v] \leftarrow 0$
for each vertex $u \neq v$ do

$$
D[u] \leftarrow+\infty
$$

Initialize $T \leftarrow \emptyset$.
Initialize a priority queue Q with an item $((u$, null $), D[u])$ for each vertex u, where (u, null) is the element and $D[u]$ is the key.
while Q is not empty do
$(u, e) \leftarrow Q$.removeMin()
Add vertex u and edge e to T.
for each vertex z adjacent to u such that z is in Q do
// perform the relaxation procedure on edge (u, z)
if $w((u, z))<D[z]$ then
$D[z] \leftarrow w((u, z))$
Change to $(z,(u, z))$ the element of vertex z in Q.
Change to $D[z]$ the key of vertex z in Q.
return the tree T

Example

Example (contd.)

Analysis

- Graph operations
- We cycle through the incident edges once for each vertex
- Label operations
- We set/get the distance, parent and locator labels of vertex $\boldsymbol{z} \boldsymbol{O}(\operatorname{deg}(z))$ times
- Setting/getting a label takes $\boldsymbol{O}(1)$ time
- Priority queue operations
- Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $\boldsymbol{O}(\log n)$ time
- The key of a vertex w in the priority queue is modified at most $\operatorname{deg}(w)$ times, where each key change takes $\boldsymbol{O}(\log n)$ time
- Prim-Jarnik's algorithm runs in $\boldsymbol{O}((\boldsymbol{n}+\boldsymbol{m}) \log \boldsymbol{n})$ time provided the graph is represented by the adjacency list structure
- Recall that $\Sigma_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$
- The running time is $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{n})$ since the graph is connected

Kruskal’ s Approach

- Maintain a partition of the vertices into clusters
- Initially, single-vertex clusters
- Keep an MST for each cluster
- Merge "closest" clusters and their MSTs
- A priority queue stores the edges outside clusters (or you could even sort the edges)
- Key: weight
- Element: edge
a At the end of the algorithm

Kruskal's Algorithm

Algorithm KruskalMST(G):

Input: A simple connected weighted graph G with n vertices and m edges
Output: A minimum spanning tree T for G
for each vertex v in G do
Define an elementary cluster $C(v) \leftarrow\{v\}$.
Let Q be a priority queue storing the edges in G, using edge weights as keys $T \leftarrow \emptyset \quad / / T$ will ultimately contain the edges of the MST
while T has fewer than $n-1$ edges do
$(u, v) \leftarrow Q$.removeMin()
Let $C(v)$ be the cluster containing v
Let $C(u)$ be the cluster containing u
if $C(v) \neq C(u)$ then
Add edge (v, u) to T
Merge $C(v)$ and $C(u)$ into one cluster, that is, union $C(v)$ and $C(u)$ return tree T

Example of Kruskal's Algorithm

© 2015 Goodrich and Tamassia
Campus Tour

Example (contd.)

Data Structure for Kruskal's Algorithm

- The algorithm maintains a forest of trees
- A priority queue extracts the edges by increasing weight
- An edge is accepted it if connects distinct trees
- We need a data structure that maintains a partition, i.e., a collection of disjoint sets, with operations:
- makeSet(u): create a set consisting of u
- find(u): return the set storing u
- union (A, B) : replace sets A and B with their union

List-based Partition

- Each set is stored in a sequence

- Each element has a reference back to the set
- operation find(u) takes O(1) time, and returns the set of which u is a member.
- in operation union(A,B), we move the elements of the smaller set to the sequence of the larger set and update their references
- the time for operation union(A, B) is $\min (|A|,|B|)$
- Whenever an element is processed, it goes into a set of size at least double, hence each element is processed at most log n times

Partition-Based Implementation

a Partition-based version of Kruskal's Algorithm

- Cluster merges as unions
- Cluster locations as finds
- Running time $\boldsymbol{O}((\boldsymbol{n}+\boldsymbol{m}) \log \boldsymbol{n})$
- Priority Queue operations: $\boldsymbol{O}(\boldsymbol{m} \log n)$
- Union-Find operations: $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$

